LeetCode 每日一题 42. 接雨水 详细多种题解 C++描述

LeetCode 每日一题 42. 接雨水

大家好,我叫亓官劼(qí guān jié ),在CSDN中记录学习的点滴历程,时光荏苒,未来可期,一起加油吧~

难度 困难 2020.04.04每日一题

题目

给定 n 个非负整数表示每个宽度为 1 的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水。
在这里插入图片描述
上面是由数组 [0,1,0,2,1,0,1,3,2,1,2,1] 表示的高度图,在这种情况下,可以接 6 个单位的雨水(蓝色部分表示雨水)。
示例:
  输入: [0,1,0,2,1,0,1,3,2,1,2,1]
  输出: 6

解法一:暴力解法

  首先我们来分析题目,题目给我一个vector<int> height,记录每个柱面的一个高度,让我们求这一段柱面可以存储多少的水,每个柱面的宽度为1。看到这个题目的第一种想法就是暴力大法了(题目写得少,水平还不够。。),暴力的话,我们只需要遍历每一个柱子,然后求出他当前柱面前面的最高的柱子的高度和后面最高柱面的高度,我们取这最高值的小的一方(水桶能盛下多少水取决于最低的一边),然后我们使用这小的一方的高度减去当前柱面的高度,即是当前柱面可以存储的水。我们遍历所有柱面,将这些柱面的储水值累加即是我们的答案。
  例如本图的示例,当I = 4时,左面最高的为height[3] = 2,右面最高的为height[7] = 3,两个的最小值为2,减去当前的柱面高度height[4] = 1为1,所以当前柱面可以储水1。
详细的代码为:

class Solution {
public:
    int trap(vector<int>& height) {
        int ans = 0;
        int length = height.size();
        int max_left,max_right;
        for(int i = 0; i< length; i++){
            max_left = max_right = 0;
            //找到左面的最高值
            for(int j = i; j >= 0; j--){
                if(height[j] > max_left)
                    max_left = height[j];
            }
            //找到右面的最高值
            for(int j = i; j < length; j++){
                if(height[j] > max_right)
                    max_right = height[j];
            }
            // 当前柱面能够接的雨水为:左右两名最高值的低值,然后减去当前柱面的高度
            ans += min(max_right,max_left) - height[i];
        }
        return ans;
    }
};

这时的执行效率为O(n^2),运行时间为:
在这里插入图片描述

解法二:动态规划

  在解法一的暴力解法中,我们发现我每次遍历到当前柱面的时候,都需要计算一次左、右的最高柱面,这里我们优化一下,先使用两个数组记录分别从两边开始,对于不同i的当前最大值。可以为我们节省每次遍历的时间,这时我们可以将我们的时间复杂度从O(n^2)优化到O(n)。大家别小看这小小的改动,这样改动之后,时间效率直接提高了一个数量级,下面贴代码和执行的效率,让大家感受下。

class Solution {
public:
    int trap(vector<int>& height) {
        int ans = 0;
        int length = height.size();
        //空vector时直接返回0
        if(length == 0)
            return 0;
        int max_left[length],max_right[length];
        //i = 0时,左面(含当前)最大值为height[0]
        max_left[0] = height[0];
        for(int i = 1; i < length; i++){
            //max_left[i] 赋值为当前柱面的高度和max_left[i-1]最大值
            max_left[i] = max(height[i],max_left[i-1]);
        }
        //i = length -1 时,右面(含当前)最大值为height[length-1]
        max_right[length-1] = height[length-1];
        for(int i = length-2; i >= 0; i--){
            //max_right[i]赋值为当前柱面的值和max_right[i+1]的最大值
            max_right[i] = max(height[i],max_right[i+1]);
        }
        for(int i = 0; i< length; i++){
            // 当前柱面能够接的雨水为:左右两面最高值的低值,然后减去当前柱面的高度,赋值为temp
            int temp = min(max_right[i],max_left[i]) - height[i];
            // 如果temp>0,则ans进行累加,否则加0
            ans += temp > 0 ? temp : 0;
        }
        return ans;
    }
};

执行的效率为:
在这里插入图片描述
只使用了4ms,相比于暴力解法的413ms足足提高了100倍的效率,所以动态规划的应用还是非常广泛的,能够极大的提高算法的效率。
  这就是今天每日一题内容了,大家一起加油~砥砺前行

亓官劼 CSDN认证博客专家 Python 全栈 数据结构与算法
大家好,我是亓官劼(qí guān jié),在博客中分享数据结构与算法、Python全栈开发、Java后端开发、前端、OJ题解及各类报错信息解决方案等经验。一起加油,用知识改变命运,未来可期。
若有事项需联系博主,可通过微信:qiguanjie2015 进行联系,有空会回复。
已标记关键词 清除标记
©️2020 CSDN 皮肤主题: Age of Ai 设计师:meimeiellie 返回首页
实付 29.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值